
SAFECode

Security Development Lifecycle (SDL)

Michael Howard – Microsoft

Matthew Coles – EMC

15th Semi-annual Software Assurance Forum,

September 12 - 16, 2011

Agenda

• Introduction to SAFECode

• Security Training and Advocacy

• Secure Development Practices

• Integrity Controls in the Supply Chain

• Summary / Wrap-up

We enjoy audience participation – please ask your questions at
any time, or feel free to share your own stories

About SAFECode

The Software Assurance Forum for Excellence in

Code (SAFECode) is a global, industry-led effort

to identify and promote best practices for

developing and delivering more secure and

reliable software, hardware and services

SAFECode’s View of

Software Assurance

Software Assurance: Confidence that software, hardware and

services are free from intentional and unintentional vulnerabilities

and that the software functions as intended.

In practice, software vendors

take action in three key,

overlapping areas to achieve

software assurance—

security, authenticity and integrity. ASSURANCE

Security

Authenticity Integrity

Thoughts to Consider

Does my team have the

right skills to do

security properly?

Who is in charge of

ensuring security is

built in?

Are you outsourcing security knowledge?

Security Training &

Advocacy

Organizational structures should be leveraged to maintain

security

• Executive Management backing and enforcement

• Core security team

• Define Policy and Standards

• Develop key expertise (SMEs)

• Oversight and direction to the organization

Security Training &

Advocacy

Advocates & Champions

• Business level security resources embedded with their peers

• Champions of security at all levels of the organization

• Speaking the language of the team

• Driving best practices locally

Security Training &

Advocacy

Security awareness is not usually taught in school

• Team members need to know how to recognize and understand the choices

they make affect secure operations of a product or service

Prospective Employer: So, you have a computer degree from a prestigious

university. Impressive.

Prospective Employee: The Cloud is where it’s at. I can write functional

J2EE code at 300 lines an hour!

Prospective Employer: Tell me what you know about developing software.

Prospective Employer: Is it secure?

Prospective Employee: Umm… I don’t know…

Security Training &

Advocacy

Classic decision point: Build or Buy

• Buying security expertise training requires finding a good

training partner

• Building requires security expertise to exist already…

Security Training &

Advocacy

Consider a phased approach

• Buy to ramp up quickly

• Create security awareness training offerings, to get team

members thinking about security

• Develop a security training curriculum

• Understand your organization’s skills gaps

• Build unique ―organization specific‖ training based on the

business needs and structure

Security Training &

Advocacy

Another classic decision: ILT or CBT

• Across member companies, we find a hybrid approach works

well

• Bootcamps and hands-on training for very specialized activities

or to ramp up quickly

• Technology-specific CBTs for quick reference

Security Training &

Advocacy

• Curriculum development is important to keep the team

engaged and current

• Multiple levels of training, based on needs and roles

Security Training &

Advocacy

Plan ahead

• Suggest business leaders take goals to have their team trained

on security

• Team members should look ahead to what skills they need for a

particular project

• Take training between releases

Keep training records

• Make sure key individuals have the skills they need to manage

security during the lifecycle

• Keep the skills of the team current as threats evolve

Security Training &

Advocacy

• Everyone needs to be security aware.

• Key individuals need to be security focused.

• Enable individuals at all levels to become more

knowledgeable.

• Empower certain individuals to have more direct control over

security

Thoughts to Consider

Is 100% security defect

free software possible?

Can security practices

guarantee secure

software?

Is your goal to know how much you don’t know?

Secure Development

The goal of the paper is to describe practices that:

• Are in use by SAFECode members

• Known to improve software security

Secure Development

History

• Original paper was published Oct 2008

• Current paper was published Feb 2011

• Most technical material overhauled

• Added CWE references (45+ base and parent weaknesses)

• Added Verification sections

• Removed training and code handling sections

Secure Development

Secure Design – Threat Modeling

• A way of identifying risks to the software before it is built

• Many methods available

• STRIDE

• Risk Analysis

• Misuse Cases

• Threat Library

• Brainstorming (no SAFECode members do this!)

• Scoring risks varies widely, too

Secure Development

Secure Design – Use Least Privilege

• Specific guidance available on how to achieve this goal for

various OSes

• A very important way to help contain or prevent damage

Secure Development

Secure Design - Implement Sandboxing

• A more aggressive least privilege mechanism

• Attempts to isolate a process to only a small set of resources

(memory, files etc)

• Newer languages do this by design

• C#, Java etc

• Can be a harder problem for C and C++ processes

• Should be used by very high exposure apps

• Acrobat, IE, Chrome etc

Secure Development

Coding - Minimize Use of Unsafe String & Buffer Functions

Secure Development

• Consider alternate secure functions instead (sampling)

Secure Development

Coding - Validate!

• Validate Input and Output to Mitigate Common Vulnerabilities

Checking the validity of incoming data and rejecting

non-conformant data can remedy the most common

vulnerabilities that lead to denial of service,

data or code injection and misuse of end user data.

In some cases, checking data validity is not a trivial

exercise; however, it is fundamental to mitigating

risks from common software vulnerabilities.”

“

Secure Development

Coding

• Use Robust Integer Operations for Dynamic Memory Allocations

and Array Offsets

• Many memory corruption vulnerabilities today in C and C++ are

due to incorrect math calculating dynamic memory sizes and

array offsets

unsigned short x = 65535;

x++;

Secure Development

Coding

• Use Anti-Cross Site Scripting (XSS) Libraries

• A focused subset of the ―verify output‖ practice

• All SAFECode members follow this pattern:

- Constrain

- Normalize

- Validate

- Encode

Secure Development

Coding

• Use Canonical Data Formats

• Avoid String Concatenation for Dynamic SQL Statements

• Eliminate Weak Crypto

• Use Logging and Tracing

Secure Development

Testing

• Determine Attack Surface

• Understand what your software is exposing to the world

• Local vs remote, anonymous vs authenticated

• As important as getting the code right

Secure Development

Testing

• Fuzz Testing

• If your software accepts input and you have never fuzz tested

the app, you will find bugs!

• Fuzz testing is ―lying and cheating‖ about data

• Penetration testing

• Often valuable, no replacement for a good process

Secure Development

Technology

• Use a current compiler suite

• Vendors add defenses to the compiled code in new versions

• Use static analysis

• We are big believers in static analysis, but …

• ―A fool with a tool is a still a fool!‖

Secure Development

Practices

Section Practice

Secure Design Principles Threat Modeling

Use Least Privilege

Implement Sandboxing

Secure Coding Practices Minimize Use of Unsafe String and Buffer Functions

Validate Input and Output to Mitigate Common Vulnerabilities

Use Robust Integer Operations for Dynamic Memory Allocations

and Array Offsets

Use Anti-Cross Site Scripting (XSS) Libraries

Use Canonical Data Formats

Avoid String Concatenation for Dynamic SQL Statements

Eliminate Weak Cryptography

Use Logging and Tracing

Testing Recommendations Determine Attack Surface

Use Appropriate Testing Tools

Perform Fuzz / Robustness Testing

Perform Penetration Testing

Technology Recommendations Use a Current Compiler Toolset

Use Static Analysis Tools

Thoughts to Consider

Are all parts of my

product being checked

for security?

Are we catching

defects too late to

address them?

Do your suppliers and vendors take as much interest in security as you do?

Supply Chain Integrity

Sourcing

• Security in contract language

• Vendor accountability

• Vendor security practices

• Intellectual property protection

• Secure storage and transfer

• Incident and Vulnerability

response

• Malware identification

Supply Chain Integrity

Supply Chain Integrity

A note about Open Source Software

• Contracts sometimes cannot be made between responsible

parties

• Therefore, component selection criteria may be more

stringent up front

• Ensure the open source project has a strong, active community

• Verify secure development and release engineering practices

exist and are followed

• Understand the goals of the community and how they support

your needs

• Don’t be afraid to contribute – enable security in the

community

People, Process, Practice

• Clearly defined roles and

responsibilities, with ―sufficient‖

access rights

• Training

• Physical security

• Network and data segregation

• Secure repositories

• Secure builds

• Collaborative review and

analysis

Supply Chain Integrity

Delivery and Maintenance

• Malware checking

• Code signing

• Checksums / Hashes

• Secure distribution and hosting

• Runtime verification

• Reputable update notification

• Secure configurations

• Customization

• Pushing security updates

Supply Chain Integrity

Processes Controls

Software Sourcing Vendor Contractual Integrity

Controls

•Defined expectations

•Ownership and

responsibilities

•Vulnerability response

•Security training

Vendor Technical Integrity

Controls for Suppliers

•Secure transfer

•Sharing of system and

network resources

•Malware scanning

•Secure storage

•Code exchange

Software

Development &

Testing

Technical Controls •People security

•Physical security

•Network security

•Code repository security

•Build environment

security

Security Testing Controls •Peer review •Testing for secure code

Software Delivery &

Sustainment

Publishing & Dissemination

Controls

•Malware scanning

•Code signing

•Delivery

•Transfer

Authenticity Controls •Cryptographic hashed or

digitally signed

components

•Notification technology

•Authentic verification

during program execution

Product Deployment and

Sustainment Controls

•Patching

•Secure configurations

•Custom code extension

Software Supply Chain

Integrity Controls

Thoughts to Consider

What are my

organization’s SwA

needs and goals?

What are my

organization’s SwA

capabilities?

Does “NIH” mean more time is spent reinventing the wheel?

Summary / Wrap-Up

SAFECode SwA Lifecycle Practices shared by member companies

• Adobe

• EMC

• Juniper Networks

• Microsoft

• Nokia

• SAP

• Symantec

www.safecode.org

Twitter: @safecodeforum

Blog: http://blog.safecode.org

Stacy Simpson

SAFECode Director

703-812-9199

stacy@safecode.org

Security Engineering

Training

Security Engineering Training: A Framework for

Corporate Training Programs on the Principles of

Secure Software Development

• Focus: Provide a framework for the development of

corporate training programs on the principles of secure

software development.

• Key Objectives: Assist others in the industry

in developing their own security engineering

training initiatives by offering insight into

the common elements of training programs in

place today within SAFECode member companies.

Security Engineering

Training

Security Engineering Training: A Framework for

Corporate Training Programs on the Principles of

Secure Software Development

• Key Areas Covered:
- Creating a framework for internal security engineering training

- Defining training targets and learning objectives

- Developing or obtaining training content

- Determining how to implement the training program

Secure Development

Practices

Fundamental Practices for Secure

Software Development – Second Edition

• Focus: Provide a foundational set of secure development

practices based on an analysis of the real-world actions of

SAFECode members

• Key Objectives: Help others initiate or improve

their own software security programs and

encourage the industry-wide adoption of

fundamental secure development methods.

Secure Development

Practices

Fundamental Practices for Secure

Software Development – Second Edition

• New in 2nd Edition:

- Verification methods and tools were developed for each listed

practice to help managers confirm whether a practice was

applied.

- Common Weakness Enumeration (CWE) references

were added to each practice to provide a more

detailed illustration of the security issues these

practices aim to resolve.

Software Supply Chain

Integrity Framework

The Software Supply Chain Integrity Framework: Defining

Risks and Responsibilities for Securing Software in the

Global Supply Chain

• Focus: Provide the first industry-driven framework for analyzing

and describing the efforts of software suppliers to mitigate the

potential that software could be intentionally compromised during

its sourcing, development or distribution.

• Key Objectives: Create a foundation for evaluating

and describing software supply chain risks to enable

the identification and analysis of mitigating controls

and practices.

Software Supply Chain

Integrity Controls

Software Integrity Controls: An Assurance-Based Approach to

Minimizing Risks in the Software Supply Chain

• Focus: Provide actionable recommendations for minimizing the risk

of vulnerabilities being inserted into a software product during its

sourcing, development and distribution.

• Key Objectives: Help others initiate or improve

their software supply chain security programs and

encourage broad industry adoption of software

integrity controls.

